Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms
نویسندگان
چکیده
The classic biochemical pH-stat model of cytosolic pH regulation in plant cells presupposes a pH-dependent biosynthesis and degradation of organic acids, specifically malic acid, in the cytosol. This model has been used to explain the higher tissue accumulation of organic acids in nitrate (NO 3 – )-grown, relative to ammonium (NH 4 + )-grown, plants, the result of proposed cytosolic alkalinization by NO 3 – metabolism, and acidification by NH 4 + metabolism. Here, a critical examination of the model shows that its key assumptions are fundamentally problematic, particularly in the context of the effects on cellular pH of nitrogen source differences. Specifically, the model fails to account for proton transport accompanying inorganic nitrogen transport, which, if considered, renders the H + production of combined transport and assimilation (although not the accumulation) to be equal for NO 3 – and NH 4 + as externally provided N sources. We show that the model’s evidentiary basis in total-tissue mineral ion and organic acid analysis is not directly relevant to subcellular (cytosolic) pH homeostasis, while the analysis of the ionic components of the cytosol is relevant to this process. A literature analysis further shows that the assumed greater activity of the enzyme phosphoenolpyruvate (PEP) carboxylase under nitrate nutrition, which is a key characteristic of the biochemical pH-stat model as it applies to nitrogen source, is not borne out in numerous instances. We conclude that this model is not tenable in its current state, and propose an alternative model that reaffirms the anaplerotic role of PEP carboxylase within the context of N nutrition, in the production of carbon skeletons for amino acid synthesis. Key-words : ammonium; biochemical pH-stat; biophysical pH-stat; cytosolic pH; ion transport; malate; nitrate; nitrogen assimilation; PEP carboxylase.
منابع مشابه
Interference by phosphatases in the spectrophotometric assay for phosphoenolpyruvate carboxylase.
The aim of this work was to discover the extent of interference by phosphoenolpyruvate (PEP) phosphatase in spectrophotometric assays of PEP carboxylase (EC 4.1.1.31) in crude extracts of plant organs. The presence of PEP phosphatase and lactate dehydrogenase (EC 1.1.1.27) in extracts leads to PEP-dependent NADH oxidation that is independent of PEP carboxylase activity, and hence to overestimat...
متن کاملMaize leaf phosphoenolpyruvate carboxylase : oligomeric state and activity in the presence of glycerol.
Maize (Zea mays L.) leaf phosphoenopyruvate (PEP) carboxylase activity at subsaturating levels of PEP was increased by the inclusion of glycerol (20%, v/v) in the assay medium. The extent of activation was dependent on H(+) concentration, being more marked at pH 7 (with activities 100% higher than in aqueous medium) than at pH 8 (20% activation). The determination of the substrate concentration...
متن کاملChanges in Sensitivity to Effectors of Maize Leaf Phosphoenolypyruvate Carboxylase during Light/Dark Transitions.
Illumination of previously darkened maize (Zea mays L. cv Golden Cross Bantam T51) leaves had no effect on the concentration of phosphoenolpyruvate (PEP) carboxylase protein, but increased enzyme activity about 2-fold when assayed under suboptimal conditions (pH 7.0 and limiting PEP). In addition, sensitivity to effectors of PEP carboxylase activity was significantly altered; e.g. malate inhibi...
متن کاملInhibition of phosphoenolpyruvate carboxylase by malate.
Malate has been noted to be a ;mixed' inhibitor of phosphoenolpyruvate (PEP) carboxylase. The competitive portion of this inhibition appears to be fairly constant regardless of the condition of the enzyme being measured, but the noncompetitive (V-type) inhibition is subject to variation depending on the source of the enzyme, its storage condition, the presence or absence of various ligands, and...
متن کاملCarbon Dioxide Fixation by Lupin Root Nodules: I. Characterization, Association with Phosphoenolpyruvate Carboxylase, and Correlation with Nitrogen Fixation during Nodule Development.
In vivo CO(2) fixation and in vitro phosphoenolpyruvate (PEP) carboxylase levels have been measured in lupin (Lupinus angustifolius L.) root nodules of various ages. Both activities were greater in nodule tissue than in either primary or secondary root tissue, and increased about 3-fold with the onset of N(2) fixation. PEP carboxylase activity was predominantly located in the bacteroid-containi...
متن کامل